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1. INTRODUCTION

The r moduli of smoothness of a function are defined in terms of the dif­
ferences L1 hf(x) ==-f(x + h) - f(x) and L1~f(x) ==- L1h(L1~-l f(x)) by
wr(f, t)=suPx,h<;,IL1~f(x)l. For continuous functions f(x) on [a, b],
DeVore [4, p. 253] proved that supx IL1~J(x)1 ~ Mh~, for some (X < 2, and
a fixed sequence {hn} satisfying hn= o( 1) and 1~ (hn/h n+ I) ~ M implies
IL1~f(x)1 ~ Mh x

, for all h and x (such that [x, x + 2h] c [a, b]). For Lp(R)
or Lp(R+), 1~p~ 00, a similar theorem was proved by the author [5]
where II L1~f II L

p
replaces the corresponding expression in Lx norm.

Freud [7] proved for L 2(T) (T= [-n, n] for periodic fucntions) that
IIL1~JIIL2=O(h~), for a sequence hn as above, implies 11L1~fIIL2=O(h').

This theorem was generalized to Lp(R) and Lp(T) by Boman [1], and
recently, the theorem was proved by Totik [12] for LI'[a,b], I ~p~oo.

The condition I ~ (hn/h n+ I) ~ K is necessary, as there are examples to
show that if I ~ (hn/h" + I) ~ K fails, the implication is no longer valid. For
functions in C(R) the condition was imposed on IL1~J(x)l, for all x (and
natural analogous restrictions were imposed in other spaces). It will be our
goal to show how this condition can be relaxed and how we can replace
the information on IL1~,J(x)1 by information on IL1~J((n + kh,,)I, with (11
any fixed sequence of reals, h ll a fixed sequence with the conditions above,
and k = 0, ± 1, ±2, .... In fact the sequence C is an added degree of freedom
that we have in some cases and not an added requirement. In general, an
added requirement is imposed on f(x) except in the cases hll = Kl- II and
(11 = a. In the case hn = 2-", (11 = 0, and IE C[O, I], the equivalence
between sUPO,;;i,;;2"-r 1L12-,,f(i/2")I~M2 "' and 11L1~JIIC[o.l-rh]~Mlh~

was established by Ciesielski [3] using orthogonal spline systems.
For proving that IL1~,J(kh,,)1 = O(h~) where [kh,,, (k + r) h ll ] c [a, h]
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implies IJ;J(x)1 :( Mh~ where [x, x + rhJ c [a, h]. we will have to make a
concession on hn; we assume hn = Kl n with ~ n = a and K = (h - alii
(where j is an integer). This is needed in our proof that involves an exten­
sion theorem. That is, we construct a function g(x) on a bigger interval
which is equal to f(x) in the given interval and for which IJ;,,,g(khnll
everywhere is of the same order of magnitude as IJ;,,,/(khn)l, for those k
for whichf(khn) is defined.

In order to facilitate our proof we will prove an approximation theorem
about a specific Cardinal B spline approximation that will satisfy estimates
on its rate of convergence and on its derivatives.

2. CARDINAL B SPLINE ApPROXIMATION USING DISCRETE DATA

In order to prove our main theorem we will need an approximation
theorem of a certain type. To introduce our approximation operator we
reall the B spline of order k with equidistant knots supported by
[-(k/2)h, (k/2)hJ given by N(k,h,t)=.N(k,t/h) and N(k,t)=.Gdt)=.
G,*Gk_,(t)=.Jxx G1(X)Gk ,(t-x)dx, where G,(t)= I for It I :(1 and
G 1(t) = 0 elsewhere. The Schoenberg variation diminishing B spline with
equidistant knots starting at ~ is given by

Sh(~' kJ; t) =. I.JUh + 0 N(k, h, t - ih - n (2.1 )

It is well known that Sh(~'.f; k; t) is of norm I as an operator on C(R),
which for any h is the identity on the functions 1 and x. It is an
approximation operator using data at the points ih +~. We also have:

LEMMA 2.1. For a polynomial p(x) of degree m :( k - 1, Sh(~' k, p; t) ­
p( t) = q( t), where q( t) is a polynomial of degree m - 2 or q( t) = 0 if
m-2<O.

Proof We may choose p(t) = t"'. We observe that by (see [2, p. 138J or
[8, p. 136J) using the formula for derivatives of B splines, we have

d
dt Sh(~' kj; t)

1
=Tz IJUh + O{N(k - 1, h, t - ih - O-N(k - 1, h, t - U - I) h - O}

I

1
=Tz L J/J((i - 1) h + 0 N(k - 1, h, t - ih - 0

1



and therefore
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which is valid at every point except in the case m = k - 1, when the
derivative above is valid only for t =I- ( + ih for any integer i. Recalling that
A7:tm=m!hm and that m-I derivatives of Sh((,k,f;t) are continuous if
m::s;k-I, we have (d/dt)m p(t)-(d/dt)mSh((,k,p;t)=O, and we have
proved that q(t) is of degree m - 1 or q(t) = 0 if m - 1 < O. Using the
linearity of Sh((, k,f; t), the fact that for f(x) = (x - om, Sh((, k,f, t) is odd
or even as a function of (t - 0 if m is an odd or an even integer, and the
results that we have already proved for smaller integers than m, we com­
plete the proof.

We are now in a position to define the general approximation operator
ShJ:

Sh.A(, k,f; t) = ItI (-I )1+ 1C) S~((, k,f; t), (2.2)

where S;,((, k,j; t) == Sh((, k, S~ 1; t) and Sh((, k,f; t) == Sh((, k,f; t).

LEMMA 2.2. As an operator on C(R), we have

II Sh)(, k,f; t)11 ::s; 2' - 1,

and for a polynomial p(t) of degree m, m < min(2r, k),

Sh.A(, k, p; t) - p(t) = O.

(2.3 )

(2.4 )

Proof Using the definition of Sh., and II Sh II ::s; 1 as an operator from
C(R) to C(R), we derive (2.3). Formula (2.4) is simply the r iterate of
Lemma 2.1.

The desired approximation operator will be Sh.,((, k,f; t) for which with
k ~ 2r we will prove:

THEOREM 2.3. For k ~ 2r, we have

and locally

II Sh.,((, k,j; t) - f(t)11 C[a,b]::S; K sup
I~I <:; h

a-Lh<:;x<:;b+Lh

IA~'f(x)l,

where K and L depend on rand k but not on f, h, or (.
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Remark. A formula that will recover polynomials of certain order and
therefore from which a theorem like 2.3 is possible has been proved (see [7.
p. 218 J), but the data there about the function is not compatible with our
requirement here.

Proof of Theorem 2.3. For fE e2r, we have

f(x)=f(f)+ (X~t).f'(f)+'" + (.~2~~~r)~lf(2rl)(f)

(x - f)2r , (2r) V(
+ (2r)! j( (~x, f));

as Sh,r((, k,j; f) is a projection on polynomial of degree <2r, we have

ISh,r(~,k,f, f)-f(t))

= _1_ 1S (f k (f - .)2r /'(2rl(I(' f)' f)1(2r)! h,r ,,,' .. ~"

I r (r)< - " max 1 f(2r)(I)1 . SI (c. k (f -' )2r f)"(2 )' L. I. . ~ h ., , "r . I~ 1 ,E 1/

where 11 = [f - Ikh/2, f + Ikh/2].
Therefore, we have

1 Sh.r(~, k,f, f) -f(t)1 ~ (2~)! It, C)C~l) 2r Ie ~:~kh/2 1 f(2r)(01·

We can now write

(r/h)2r fh!2r. fh/2r r 1 (2r)fh(X)=-2r- ... L (-I)' I I

( r ) 111 2r h!2r I ~ 0 I

The known estimates (similar to [II, p. 163J) are

I
If(x)-fh(X)1 ~-(2r) sup 1L1~rf(x-rlJ)1

r Iryl,:; h

and

I( d )2r I (r)2r I r (2r)d j~,(x) ~ h -(2r) L I sup. l L1 f;_/j,,f(x-r(r-I)IJ)1
x r I ~ 1 Iryl ,:; h!r

~h 2r{r2r (L) t (2;)} sup 1L1~rf(x-rlJ)l.
r I~ I Iryl,:;h
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The above estimates for fh2r ) and f -fh can be deduced from computation
done elsewhere but are easy to deduce directly from the definition of fh'

Combining the estimates of If- fh I and fh2r ) with the above, we get

ISh.r(~, k,f; t) - f(t)1 ~ ISh,r(~, k,f - fh; t)1 + I fh(t) - f(t)1

+ ISh r(~, k,fh' t) - fh(t)1

and complete the proof using Lemma 2.2 and the definition on the modulus
of continuity. We can observe that

and that L ~ (rk/2) + r, but these constants are not important for later
proofs.

3. THE MAIN THEOREM WITH THE RESTRICTION fE LIP/3

The main theorem will be proved below for functions on R first.

THEOREM 3.1. For fE C(R) satisfying ILfhf(x)1 ~ Kh fJ , for some /3 and
K, the condition ILf;;:f(~n + khn)1 ~ Kh~, where a. ~ m for"all k, a sequence hn
satisfying hn= o( 1) and 1~ (hn/h n+ 1) ~ M, and some sequence ~n of reals
implies 1L1;;'f(x)1 ~Klh~,for all x and all h.

Proof We choose r such that 2r? m + 1 and use the approximation
operator Shn,,(~n, 2r, f; t). From Theorem 2.3,

Using the definition of Shn,n we have

Observing that
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where a)1) ~ 0, Ljap) = I, for Ii I ~ (1- 1) r, we have

(d)m
dt SU~n, 2r,.f; t)

=hn m~ (~a/I) iJ~:f(~n + (i - m +j) hn)) N(2r - m, hn, t - ihn - ~n)

(3.2)

and therefore

We have now

from which, using (3.1) and (3.3),

or

(3.4 )

We will show under the assumption on f that an equation of the
type (3.4) for :t ~ m implies that for f( x) EO Lip p, i.e., 1 iJ h' f( t) 1 ~ Ch/i, for
some p, that 1 iJh' f(x)1 ~ K 1ha. One can choose a subsequence '1n of hn
which satisfies 1 < T] ~ ('1n/'1n + d ~ T2 < 00 (for T 1 and T 2 big enough). We
now have for some n, '1n < h ~ '1n I'

Choosing T, and then T 2 such that A/Tf < 1 and therefore A/T'l < 1, we
have A'wmU, '1n+\) ~ C(A/Tq)' h/i ~ C(A/Tfr
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s- 1

,;:::.,M h~+BT'!.'-~h~+BT'!.' " AjT-j~'7~
'" I 2 2 L., I n

j'= I

~ h~(MI + BT';-~ + BT;'(1/1 - (A/Tm),
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and the last expression does not depend on s. This completes the proof.

THEOREM 3.2. For f E Lip fJ in [a, b], for some fJ > ° (and therefore
fEC[a, b]), 1,1;;:J(~n+khn)1~Kh~, for some IX, IX.,;;;;m, and all k and n
such that Un + khn, ~n + (k + m) hn] c [a, b], where the sequence hn and
~n are those of Theorem 3.1, implies 1,1;;' f(x)I";;;;K,h~, for all h and x
satisfying [x, x+mh] c [a+ Th, b- Th], where T is independent of f, h
(but T depends on m), and K, is that of Theorem 3.1.

Remark. Actually Theorem 3.2 contains Theorem 3.1 but the present
arrangement may help clarify the proof.

Proof of Theorem 3.2. We follow the proof of Theorem 3.1 with special
care in some of the steps involving the domain supporting the
approximation process. For the main inequality (3.1), we have

sup 1,1;;'f(t)1
t,t+rnhE[aJ,b J] (h)rn
.,;;;; Awrn(j, hiP [a l - Lhn, b l + Lhn]) + B h

n

x sup {I ,1;;:f(~n +khn)l; [~n+ (k-2r)h n, ~n + (k +m +2r)hn] c [ai, b l ]},

where wrn(f, hn, [a l - Lhn, a2 + Lhn]) = sUPnEhn {I ,1;;' f(x)[; [x, x + '7m] c

[al - Lh n, b I + Lhn]}. We choose now '7n as in the proof of Theorem 3.1,
and because of their geometric progression the result will be valid if
Cal - L I Lt==n '7" b l + L , L~n '7,] c [a, b], for L I = max(L, 2r + 1]. Recall
now that L I Lf:n'7,";;;;L I '7n :Lf:n (I/Tdn-'=L I (TdT I -l) '7n=L 2 '7n. In
other words, choosing a I = a + 2L 2 hand b I = b - 2L 2 h will do. The rest of
the proof follows that of Theorem 3.1 exactly.

4. RELAXING THE CONDITION f E LIP fJ

In this section we will show how the a priori assumption f E Lip fJ, for
some fJ> 0, can be proved by imposing a different condition on f or on the
sequence. We will need first the next two lemmas.
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LEMMA 4.1. For j E L«R), IA;;:j(~" + khn)1 ~ Kh~ implies

IA j(J' + kh )1 <: AKl/nhaln II f'lll (lin) where A i~ independent 01' f' ~hn S!l n -......:::::: fl. L--.r.- ' . -. 'J . , ., n ,

and hn, and therejore IAhJ(~n+khn)1 ~Klh~/l1.

Proof This is a lemma on sequences in L,(Z) for the sequence
ak = j( ~n + kh n ) and obtaining a Kolmogorov-type inequality there. In an
earlier paper [6] estimates were given for the constant A which yield the
existence of such constants.

LEMMA 4.2. If jELoo[a, b], IA;;:j(~n+khn)1~Kh~, where Un+khn,
~11+(k+m)hn]c[a,b] implies IAhJ(~n+khn)I~K2h~1/m, where iX]=
min(IX, 1) jor [~n + kh n, ~n + (k + 1) hn] c [a, b] and hn~ (b - a)/6m.

Proof First, we observe that Lemma 4.1 is valid on [a, (0) or ( - CD, b]
using the result of [6] for loo(N) rather than for loo(Z). To prove
the result for [a, b], we multiply j by g I (x), where g] (x) = 1 for a ~ x ~
(a+2b)/3, g,(x)=O for (a+5b)/6~x<00, and is defined linearly
elsewhere. For tP,(x) == Igl, IAZ~tP'(~n+khn)1 ~ IA;;;J(~I1+khn)1+
IAhn g'(~n + kh n)! C 11/ II ~ Kh~ + (h,J6(b - a))C II.fII· tPl is now defined in
[a, (0) and we obtain the estimate for IAhntP'(~n + khn)l. Similarly, we can
derive the estimate for tP2=(-g2' where g2(X)= 1 for (2a+h)/3~x~h,

g2(X) = 0 for - 00 < x ~ (5a + h )/6, and is defined linearly elsewhere.
Therefore IAhntPi(~11 + kh,,)1 IS bounded by C I h~lim and hence
IAh,J(~n + khn)1 ~ 2C, h~l/m.

Remark. For our needs it does not matter thatiX,/m replaces IX/m since
all that matters is that the condition is valid for some fJ > O.

LEMMA 4.3. If j is locally monotonic, that is for some jixed d in any
interval oj length d there is at most one change of direction, then
IAZJ(~n+khn)1 ~Kh~, for h" satisfying 1 ~hn/hn+] ~M, implies
IA,J(x)I~K2halm. If the condition IA;;:/(~n+khn)I~Kh~ and local
monotonicity is given in [a,h], they imply IAh/(x)I~K2hal/m, for
[x, x + h] c [a, b], where IX I = min(1, IX).

Proof We restrict ourselves to the case in which the conditions are
given on R since in the other case the proof is similar. Using Lemma 4.1,
we have IAhJ(~,,+khn)1 ~Klh~/m==Klh~. We construct a subsequence of
hn, I]n satisfying 1 < T] < (I] n/I]n + d ~ T2< 00, with T,:;::O 2.

Given two points x and y, x < y, we may assume that there is no change
of direction between them, otherwise (if there is a change of direction
at (), we may write the estimate 1/(x)-j(y)1 ~max(lj(x)-/(Ol,

1/(y)-j(OI). We estimate separately Ij(x)-j((x+y)/2)1 and
I/(y)-/((x+ y)/2)1 (using the knowledge that j is monotonic around
(x+y)/2). We choose n such that I]n«1/2)lx-yl~l]n 1 and integers
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k(n) and I(n) such that x~~n+k(n)lJn«x+y)/2~~n+/(n)lJn,and
the integers k(n) and I(n) are minimal satisfying it. We have
If(x)-f((x+y)/2)1 ~ I/(n)-k(n)I'KIIJ~+1f(x)-f(~n+k(n)lJn)1 ~

([T2]+2)KIIJ~+lf(x)-f(~n+k(n)lJn)l.Continuing the process with
[x, ~n+k(n)lJn] whose length is smaller than IJn' we have

00

~(T2+2)K11J~ L 2-/lr~K2Ix-yl/l
r=l

which completes the proof.
More useful, in particular for Section 8, is the following lemma.

LEMMA 4.4. If f(x) is locally absolutely continuous and
1 ,17: f(~n + khn)1 ~ Kh~, for I ~ hnlhn+J ~ M, then fE Lip(l1lm). If the con­
diti~n 1,1;::f(~n+khn)1 is given in [a, b], thenfELip(:x1lm) there.

Proof We will follow partly the proof of Lemma 4.3. We have
1,1hJ( ~n + khn)1 ~ K Ih;:, for the k's in question and f3 = :x 11m, and choose a
subsequence IJn of hn such that I < T I~ 1J.JlJn + I ~ T2< 00, where T I :?: 3 1

/
11•

For x < y, we choose n such that '1 n< I x - y 1 ~ '1 n_ I and integers k I (n) and
k 2(n) such that x ~ ~n + k 1(n) IJn < ~n + k 2(n) IJn ~y, where k l(n) is minimal
and k 2(n) is maximal satisfying the above. Obviously, If(x)-f(y)1 ~

I f(x) -f(~n+ kl(n) IJn)1 + 1 k 2(n) - kl(n)1 KIIJ;: + 1 f(~n + k 2(n) IJn) -f(y)l·
We have Ikl(n)-k2(n)I~T2 and IX-~II-kl(n)lJlIl+

Iy-~n-kAn)lJnl <2'111' We now find 6 such that for L;~I 1('-z;1 <6,
(,<Zi~(,+l' we have L;~I If(c)-/(zJI<h 1i

, where h=lx-yl. We
continue the above process with the two intervals left. We obtain
1/(x)-f(y)1 ~ T2KI(IJ;:+21J;~+I)+I,where lis a sum on four intervals of
total length 4'111+; ~ 4'111+ I' In general, after I steps,

1 f(x) -/(y)1 ~ T2KJIJg + ... + 21'1;:+ /) + 1(1) ~ K21J;: + 1(1),

where 1(1) = L~~ I I f(C) -/(z;)I, L 1(, - z;! ~ 21+ 1'111 + I' Since T I> 3 1
!li > 3,

L 1('-z;1 <213 I'ln and smaller than 6 for sufficiently big I, we have
I f(x) - f( y)1 ~ {2T2K) + I} hii , where h = Ix - y I.

LEMMA 4.5. If ~n = ~ and hn = B/-n, for a fixed integer I, fE C(R) and
1,17:f(~+khn)I~Kh~ implies l,1hf(x)I~K2h,/m. In case the assumption
above is given in an interval, then l,1hf(x)1 ~K2h'1/m there.

Proof We have to choose the points appropriately, but because ~n = ~

and hn= BIn, we fit ~ + kB/-n = ~ + klBl-n 1, and therefore we have in
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the proof of the last lemma only two intervals left at any stage and
therefore continuity is sufficient.

We are now able to deduce the following as corollaries.

THEOREM 4.6. For f(x) locally monotonic and continuous or f(x) locally
absolutely continuous, the implications of Theorem 4.1 and 4.2 are valid
without the a priori assumption that f(x) E Lip fl.

THEOREM 4.7. For ~,,= ~ and h" = KI- ", the implications ol
Theorems 4.1 and 4.2 are valid without the a priori assumption that
f(x) E Lip fl.

5. FURTHER CASES

In this section we will achieve as corollaries of the theorems in Sections 3
and 4 further results first on periodic functions and then for the second dif­
ference on an interval or on R +.

THEOREM 5.1. For fE C( T), continuous functions with period 2n, the con­
dition IL1ZJ(khn)I~Kh~, a~m, h,,=(2n/r)I-" (with some integer r),
implies IAI:' f(x)1 ~ K 1h',for all x and h.

Prool We use the results from Theorems 3.2 and 4.7 on (- 6, 2n + 6)
and the periodicity to obtain this corollary.

For m = 2 and fE C(R +), we can obtain the following result.

THEOREM 5.2. Suppose h" is as given in Theorem 3.1, IAj,J(khn)1 ~ Mh~

and f satisfies one of the following conditions: (a) fE Lip fl in R +, (b)
f E C(R +) and f(x) is locally monotonic, (c) f(x) is absolutely continuous.
Then IAj,f(x)1 ~Mlh~,for all xER+ and h~O. Ifh,,=Al n, then instead
ol(a), (b), or (c), we just assume thatfEC(R+) and stillIAj,f(x)1 ~Mlh',

for all x E R + and h ~ O.

Remark. Theorems 3.2, 4.6, and 4.7 would imply the validity of this
theorem for x E [6, 00) and h > O.

Proof We definef(x) in (- 00,0) asf(O) - (/( -x) - f(O)) and obtain,
for all k, IAj,J(khn)1 ~Mh~ in R and therefore IAj,f(x)1 ~Mlha, for all x.
But for x ~ 0 the new function coincides with the function in the theorem.

THEOREM 5.3. For f(x) E C[O, 1J and hn = I fl, the condition
IAj,J(khn)[ ~ Mh~Jor k = 0, 1,... , l" - 2 and all n, implies IAj,f(x)1 ~ M] h',
for x, x + 2h E [0, 1].

Proof We define g(x)=f(x)-f(O)(I-x)-f(l)x, for XE [0, 1J,
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g(x)=-g(-x), for xE[-I,OJ, and g(x)=g(x+2k), elsewhere (see
Timan [11J). The function g satisfies l,1tg(khn)1 ~Mhh' and therefore
I,1~ g(x)1 ~ Mh~, for all x and h, but in [0, 1J, I,1~f(x)1 = I,1~ g(x)l.

For higher differences this theorem would be generalized with a substan­
tial amount of work.

6. AN EXTENSION THEOREM

In order to prove a result like Theorem 3.1 or Theorem 4.7 for differences
of order r> 2 on an interval [a, bJ or R +, we will need an extension
theorem. An extension theorem would provide a function g identical with
f(x) inside the interval or in R+, satisfying an estimate on I ,1i,,,g(kh,JI
similar to that on l,1i,j{khn)] but in a bigger interval or in R. An extension
theorem that uses derivatives rather than differences is the well-known
Whitney extension theorem (see, for instance, [10J). For differences given
at all points x, an extension theorem was achieved using Stekelov-type
integrals and the Whitney extension theorem [9]. Here the proof would be
different as only data on kh" are used.

THEOREM 6.1. Suppose f(X)EC[O,AJ for which 1,12'-nf(k2-n)l~

M2 'IX, for (k + m) 2 "~A, where k is a positive integer and ':I. is not an
integer unless ':I. = m. Then we can construct g(x) E C[ - A, A J such that
1,1~'"g(k2 ")I~K2n\ where K depends only on m, ':I., M, B=.
SUPk.n If(k2- n

)1 and A.

Remark. Dependence on A stems only from our construction. This
restriction could have been removed (with some additional work) but for
our purposes there is no need for this improvement. It is the distinction
between Lipschitz and Zygmund classes that causes the restriction "':I. is not
an integer unless ':I. = m."

Proof We first assume m - 1 < ':I. ,,:;; m. Using the known result [11,
p. 105J, we have

m-2 m-I ( 1)
,1~,-l((X) - 2m - 1,1;;' l((X) = I I m - ,1z' f(x + vh).

\'~OI'~\'+1 11

We substitute h=2- n and x=O and multiply both sides by (2 m
- ' )"-' to

get

12(111 1)(n- 11,12'" +"((0) _ 2(m- I In ,1;-',; I f(O)1

m-l
,,:;; 2(111-1 j" -2- max 1,1; "f(k2 -")1

m-l
'::::-_M'2-n(~-m+l)

"" 2
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From this behaviour we may deduce that lim/l~' 2(/11 (1/lL1~:, If(O)=
Cm __ I exists. An estimate for C/II I is given by I CII I I ~

12(m-I)("-/I)L/;'~:lf(0)1+((m-I)/2)M2 {/I /b(I/(I_2 H/II I)),andl
is chosen so that 2 (/I / 11m < A or IC" I I~ K/II I. with Kill 1 satisfying
what K of our theorem is supposed to satisfy. We now examine in
[O,A] the function g/ll l(x)=f(x)-(I/(m-I)!) C'/I IX/ll 1 Obviously.
L/7/2"gm l(kI2")=L1'~~2"f(kI2") for k=O, I..... Moreover.

~2 (/II 1)"12(m 1)/lL/~'"lf(O(-Cm II

x

~2 (m 1)/1 I 12(m 11/L/~'_llt(0)-2{m 11I/+I)A~,,+I(f(O)1

/=11

x m-I(m-II" I --M2 -(/+111' '" II

/~/I 2

where K/II I (I) depends on m. ':I.. M, B. and A. We also see that for
other k (that can be chosen as k ~ m), we have I L/'~'2" I g/ll dkI2")1 ~

(Km_ dl )+kM)2 m
. Since L/'t'2,,1J(//2") = L/T'2,,11J((l + I )/2/1)-L/'t'.2" 11J(l/2/1).

for any 1J, we have

which implies 1L/7/2"l g", l(kI2")I~(KIll 1(1)+kM)2"'. We continue
now to establish C/II 2 using the same method. We just have to consider
now L/;'" I gm l(k/2/1), for k ~ m - I. and define gm 2(X) =f(x)­
(CIll I/(m -1 )!) x'" 1_ (Cm 2/(m - 2)!) x m

-
2. The constant Cm 2 is

bounded by a constant that depends on m, ':I., M, B, and A like K of our
theorem. Also L/7!2" I gm 2(X) = L/7/2" I gm I(X) and IA7'2,,2 gm 2(0)1 ~
Km_ 2( 1) 2 ">, with Km 2( I) depending on the same constants as Km I and
Km_I(I). Moreover,

for k ~ m.

We continue and finally obtain g()(.\') =f(x) - L;'~OI C/( II!!) Xl.

and g()(x) satisfies I A't~7" go(kI2/1)1 = IA;~7"f(kI2")1 ~ M2 -In and
IA~/2" g()(kI2/1)1 ~ K2 II', for 0;( 1< m and k ~,;;. We now define the new
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function g*(x)=go(x), for O~x<A, and g*(x)=O, for x<O. We now
examine A7/2" g *(k/2/l); for k ~ 0 the estimate is known; and for k < 0,

We make a final adjustment to our constants and function writing
g(x) =g*(x) + L7~()1 C/(I/!!) x/ in [-A, A] and complete our theorem for
the case m - I <:x ~ m.

If we do not have m - 1 <:x ~ m or, in other words, :x < m - 1 (:x cannot
be an integer in this case), then we show that I A~'_-;; I f(k/2/l)1 ~ K2 -/l>, for
o~ k < k o. This is shown by a Marchaud-type proof, but here we have an
added difficulty for k which is odd, that is, not a multiple of 2. We can
write A~'_" I f(k/2/l) = A~'~; 1(2[k/2]/2/l), for even k, or .;J~'_-;; 1 f(k/2/l) =
-A~'" 1 f( 2 [k/2]/2/l) + A~' ,,/(2[k/2]/2/l), for odd k. Estimating
,1~'~, I /(2[k/2]/2/l), we have

A~'_" 1 f(2[k/2]/2/l)

=2 m+1A~'-;;:lf([k/2]/2/l-I)

+2 m+l/lI 2 mfl (m-l)A;'_"f(([k/2]2+V)2-/l).
/~o II~·\'+ I J1

Therefore

IA~'nlf(k/2/l)1~2-m-l max IA;'_-~}lf(k/2/l ')1
o~ k::s;: 2n- [ --- m + 1

(
m-l )+ -2- + I O,;;~~~-m IA;'_nf(k/2/l)!,

and this inequality would lead to 1 A~' " 1 f(k/2/l)1 ~ M 12 -/la, if m - 1> rJ.,

following the proof of Marchaud's inequality (see, for instance, [11,
pp. 105-106]).

Actually, the fact that the sequence was 2-/l of K· 2-/l can be changed to
Kl /l, I integer, for any integer, and we obtain the following theorem.

THEOREM 6.2. If h/l = O-/l, fE C[O, A], and IA;;:f(kh/l)1 ~ Mh~ in
[0, A], and either rJ. = m or rJ. is not an integer, then we can extend f to a
function g such that g(x) = f(x) in [0, A], g(x) C[ - A, A], and
IA~;, g(kh/l)1 ~ Mh~ for [kh/l, (k + m) h/l] C [ - A, A].
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For the proof which does not require much more than the proof of 6.1
but is much messier, we use Timan [11, p. 103]:

I I I I

A%;f(x)= L ... L A~'f(x+I'JI+'" +1',)1).
1'] = 0 \"'1 c= 0

and therefore

I ]

A;;;f(x) -III/A;;' f(x) = L
\'l-=:-O

I ]

L [A;;'f(x+\']h+'" +\'II/h)-A;;'f(xl]
,'/Ii 0

I] I] "~I +

= L ... L
-+- \'/11 1

LA;;' , If(x + th).
t'l = 0 \"/11 = 0 , ---,- 0

Substituting x = Ck/I" and h = C/I", we can follow the steps of the proof
almost word for word, only the formulae will be substantially more com­
plicated.

7. MODULI OF CONTINUITY IN AN INTERVAL AND ON R +

We can now deduce the result in an interval or in IR +.

THEOREM 7.1. IfIEC(R+), hll=Cl ",for some integer I, and

IA~J(khll)1 ~ MI In, for h = 0, 1, 2, ... ,

where either rJ.=m or 'Y. is not an integer, then IA;;'f(x)I=M]h"for all
h~O and x~O.

THEOREM 7.2. Iff(x) E C[O, 1] and IA7~"f(kl ")1 ~ MI n',for k = 0, ...,
l" - m, and either rJ. = m or rJ. is not an integer, then IAh' f(x)1 ~ M] h" for all
x and h such that [x, x + mh] c [0, I].

Proof These are immediate corollaries of the extension theorems in
Section 6 and theorems of Section 3 as well as Theorem 4.7.

Remark. When we have [a, h] instead of [0, 1], we just use (II = a and
hll = ((h - a)/r) I ", where r and I are integers.

8. A RESULT ON LOCALLY LEBESGUE INTEGRABLE{(X)

In some sense we restrict our function with an a priori restriction of at
least{E C(J). We will show as a corollary a condition on locally Lebesgue
integrable functions that will imply fE Lip rJ. in C.
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Define ak(~' h) = (1/h) H~~~+ 1)hf(u) du and L1ak(~' h) = ak+ 1(~' h)­
ak(~' h), while L1rak(~' h) = L1(L1r-lak(~' h».

THEOREM 8.1. For locally Lebesgue integrable function f(x), any
sequence ~n and a sequence hn satisfying 1 ~hnlhn+l ~M, the condition
ILlmak(~n, hn)1 ~Kh~, for rx~m, implies If(x+h)-f(x)1 ~Kh~ (for local
L I equivalent to f).

Proof Define F(x) = J~f(u) du and we have IL1mak(~n' hn)1 = 1(l/hn)
L1;~ + I F( ~n + khn)1 ~ Kh~ or IL1~ + I F( ~n + khn)1 ~ Kh~ + 1, but F(x) is locally
absolutely continuous and therefore, using Theorem 4.6, ILl;;'+ 1 F(x)1 ~

KlhHI
. This implies that F(x)=f(x) a.e. and F' is continuous, which

implies 1L1~'fl(X)1 ~Mh~, for fl which is equivalent tof(x).
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